Problem 1 (45 minutes; 15 points in total)

Answer the following questions, brief and to the point:

- 2 pnts (a) Evaluate the commutator $[L_i, p_j]$.
- 2 pnts (b) Calculate the wavelength in nm of the Balmer H- β line $(n=4 \rightarrow n=2)$ in hydrogen (use $\hbar c=197$ eV nm). What is the color of this line?
- 2 pnts (c) Which two physical effects are responsible for the fine-structure of the hydrogen spectrum?
- 2 pnts (d) Explain the principle of a nuclear magnetic resonance (NMR) experiment and how it can be used to measure the g-factor of the proton.
- 2 pnts (e) Which of the two isotopes of rubidium (Z = 37), ⁸⁶Rb or ⁸⁷Rb, can be used for Bose-Einstein condensation? Why?
- 2 pnts (f) Show that the ground-state electronic configuration ${}^{7}S_{3}$ of Cr (Z=24, [Ar] $3d^{5}4s^{1}$) does not violate the Pauli principle.
- 2 pnts (g) What are para- and orthohelium? Sketch the energy levels (no fine-structure) of both. Explain the differences.
- 1 pnt (h) Calculate the Bohr radius of hydrogen, $a_0 = \hbar^2/(me^2)$, in nm.

Problem 2 (45 minutes; 15 points in total)

At a particular time, the wave function of a spin-1/2 particle moving in a three-dimensional potential is

$$\psi(\vec{r}\,) = A(x+y+z)\,e^{-\beta|\vec{r}\,|}\,\xi\ , \quad \text{where}\ \ \xi = \frac{1}{\sqrt{5}}\left(\begin{array}{c} i \\ -2 \end{array}\right)$$

is its spinor, with respect to the basis α , β of eigenvectors of S_z .

- 3 pnts (a) Write the spatial part of ψ in terms of spherical harmonics Y_{ℓ}^{m} , by using spherical coordinates for $\vec{r} = (x, y, z)$.
- 2 pnts (b) Calculate the value of the normalization constant A (assume that A is real and positive).
- 3 pnts (c) If we were to measure L^2 and L_z , what values could we find, and with what probability? What is the expectation value of L_z ?
- 2 pnts (d) If we measure for L_z a value of 0, what will the new wave function be?
- 3 pnts (e) If we were to measure S_z , what values could we find, and with what probability? The same question for S_x ; first give its eigenvectors α_x , β_x on the basis α , β .
- 2 pnts (f) $\vec{J} = \vec{L} + \vec{S}$ is the total angular momentum of the particle. If we were to measure J^2 , what values could we find?

To solve problem (a), you should use that

$$Y_1^0 = \sqrt{\frac{3}{4\pi}} \cos \theta ,$$

$$Y_1^{\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\phi} .$$

For problem (b), you may use that

$$\int_0^\infty r^n e^{-\beta r} dr = n! \beta^{-(n+1)} .$$

An electron, with mass m, is confined in a 3D cubic box with sides of length L, *i.e.* the potential is:

$$\begin{array}{rcl} V(x,y,z) & = & 0 & \quad 0 < x,y,z < L \ , \\ & = & \infty & \quad x,y,z < 0 \ \ {\rm or} \ \ x,y,z > L \ . \end{array}$$

3 pnts (a) Give the (time-independent) Schrödinger equation. Show that the solution that obeys the proper boundary conditions is

$$\psi(x, y, z) = A\sin(k_x x)\sin(k_y y)\sin(k_z z) .$$

What are the conditions on k_x , k_y , and k_z ? Give the corresponding energy eigenvalues E. Calculate the normalization constant A (assume that it is real and positive).

2 pnts (b) Discuss the degeneracy of the energy levels.

3 pnts (c) Now put 24 electrons in the box. Assume that they do not interact with each other. What is the lowest possible energy, in units of $\hbar^2 \pi^2/(2mL^2)$?

2 pnts (d) Answer question (c) for spinless particles with mass m.

 $sin^2 = \frac{1}{2i}(e^{ix} - e^{ix})(e^{ix} - e^{ix})$ $= \frac{1}{2i}(e^{ix} + e^{2ix} + e^{2ix})$ $= -\frac{1}{2}(\cos 2x + \frac{1}{2})$

Problem 4 (35 minutes; 10 points in total)

An electron is at rest at the origin in the presence of a magnetic field whose magnitude (B_0) is constant but whose direction rotates around in the (x, y) plane at constant angular velocity α , so

$$\vec{B}(t) = B_0 \left[\cos(\alpha t)\hat{x} + \sin(\alpha t)\hat{y} \right] . \tag{1}$$

The Hamiltonian for the particle is given by $H=(e/m)\vec{B}\cdot\vec{S}$, where $\vec{S}=\hbar\vec{\sigma}/2$ are the spin matrices. A possible solution is given by the spinor

$$\xi(t) = \begin{pmatrix} [\cos(\lambda t/2) + i(\alpha/\lambda)\sin(\lambda t/2)]e^{-i\alpha t/2} \\ i(\omega/\lambda)\sin(\lambda t/2)e^{i\alpha t/2} \end{pmatrix}$$
 (2)

where $\omega = -eB_0/m$ and $\lambda = \sqrt{\alpha^2 + \omega^2}$.

2 pnts (a) Write the Hamiltonian explicitly as a 2×2 matrix.

3 pnts (b) Show that $\xi(t)$ is indeed a solution of the time-dependent Schrödinger equation for this problem.

1 pnt (c) Verify that $\xi(t)$ is properly normalized.

2 pnts (d) Calculate $\langle \sigma_z \rangle$ to verify that $\xi(t=0)$ corresponds to a spin-up electron.

2 pnts (e) Calculate the expectation value of the spin in the y-direction as a function of time.